PREPARATION AND CYCLOADDITION REACTION OF 1-AMINO-2-AZABUTADIENE

Yujiro NOMURA, Yoshito TAKEUCHI, Shuji TOMODA, and Masato M. ITO Department of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

2-Methyl-N-(l-phenylvinyl)-l-(l-pyrrolidinyl)-l-propanimine ($\underline{1}$), a new type of 2-azabutadiene, was readily prepared by thermolysis of 5,5-dimethyl-3-(l-phenylvinyl)-4-(l-pyrrolidinyl)- Δ^1 -1,2,3-triazoline. Regioselective [4+2] cycloaddition reaction of $\underline{1}$ with some dienophiles afforded 2-isopropyl-6-phenylpyridine derivatives in decent yields.

Although a number of 2-azabutadienes have been isolated or generated in situ, 1) studies on their reaction as a heterodiene are very few. The only report dealing with the cycloaddition reaction of a 2-azabutadiene has been published by Aue and Thomas, who have investigated the reaction of 1-methoxy-N-(1-methylvinyl)ethanimine with dimethyl acetylenedicarboxylate (DMAD). 1d In this paper we wish to report the preparation of a new 2-azabutadiene, 2-methyl-N-(1-phenylvinyl)-1-(1-pyrrolidinyl)-1-propanimine ($\underline{1}$), by thermolysis of 5,5-dimethyl-3-(1-phenylvinyl)-4-(1-pyrrolidinyl)- Δ^1 -1,2,3-triazoline ($\underline{2}$), and its cycloaddition reaction with some dienophiles leading to pyridine derivatives.

The preparation of $\underline{1}$ was most simply achieved by heating a dimethyl-d₆ sulfoxide (DMSO-d₆) solution of $\underline{2}$, obtained from the cycloaddition reaction between α -azidostyrene and l-(2-methyl-l-propenyl)pyrrolidine, ²⁾ in an evacuated (10⁻⁶ Torr) NMR tube for 24 hours at 80 °C. Direct observation of the $^1\text{H-}$ and $^{13}\text{C-NMR}$ spectra unequivocally demonstrated the exclusive formation of $\underline{1}$. Table 1 collects the data pertinent to the structural confirmation of $\underline{1}$. In addition to a phenyl group and a 1-pyrrolidinyl moiety, the newly formed isopropyl group was indicated in $^1\text{H-NMR}$ spectrum both by the doublet at δ 1.04 (6H, J= 7 Hz) and by the septet at δ 3.01 (1H, J= 7 Hz). The two low-field protons, each of which appears as a singlet, were assigned to the terminal olefinic protons at C-5 (H^a and H^b). The structure was further supported by the study of the $^{13}\text{C-NMR}$ spectrum. The presence of three quaternary sp² carbons, one of which corresponds to the ipso

Table 1. NMR spectral data of 2-methyl-N-(1-phenylvinyl)-1-(1-pyrrolidinyl)-1-propanimine $(\underline{1})$

¹H-NMR			Assignment*	¹³ C-NMR	
δ * *	Appearance (J, in Hz)	Area		<u></u> 8**	Appearance***
1.04	d(J= 7)	6Н	1	19.7	q
1.6-2.0	m	4H	7	24.8	t
3.01	sep(J= 7)	1H	2	29.9	d
3.2-3.7	m	4H	6	47.4	t
4.34	S	1H	н ^Ь		
4.94	S	1H	H ^a } 5	93.0	t
			, 9	125.2	d
7.2-7.7	m	5H	1 1	127.2	d
			10	127.8	d
			8	139.8	S
			3	152.7	S
			4	159.4	S

^{*} Numbers refer to the hydrogen or carbon atom (see previous page).

carbon of the phenyl group, and one relatively high-field sp² carbon (δ 93.0) clearly suggested a tri-substituted azabutadiene skeleton. The location of three substituents was appropriately explained by the hydrolysis products, acetophenone and isobutyramide, as well as by the simplest decomposition mechanism involving 1,2-hydrogen shift in $\underline{2}^3$) as shown in the previous page.

The structure of $\underline{1}$ was further demonstrated by the reaction of $\underline{1}$ with DMAD. Thus, when $\underline{1}$ was treated with two molar amount of DMAD for 1 day at ambient temperature, dimethyl 2-isopropyl-6-phenylpyridine-3,4-dicarboxylate $(\underline{3a})^4$ was obtained in 37 % yield.

Table 2. Cycloaddition reactions of $\underline{1}$ with some dienophiles

Dienophile	Mol Ratio (Dienophile/ <u>l</u>)	Time	Products	Yield (%)*
DMAD	2.1	1 day	<u>3a</u>	37
<u>4a</u>	2.0	2 days	<u>3a</u>	11
<u>4b</u>	2.0	2 days	3b 5b	25 37
<u>4c</u>	1.1	5 days	<u>3c</u> **	44

^{*} Yields are not optimized.

^{**} Measured in DMSO- d_6 with TMS as an internal standard.

^{***} Splitting pattern determined by off-resonance decoupling.

^{**} In this case p-benzoquinone was used to oxidize the initial product.

The property of $\underline{1}$ as a heterodiene was further substanciated by [4+2] cycloaddition reaction with some olefinic dienophiles. The general procedure was as follows. A DMSO solution (30 ml) of $\underline{2}$ (1.0 g, 0.037 mol) was stirred at 80 °C for 24 hours. An appropriate dienophile ($\underline{4a-c}$) was added to the mixture and stirred at room temperature. The usual aqueous workup followed by chromatographic separation using silica gel provided the pyridine derivatives ($\underline{3a-c}$)^{4,5} and the dihydropyridine derivative ($\underline{5b}$).

An intriguing aspect of these cycloaddition reactions involving $\underline{4b}$ and $\underline{4c}$ is the formation of only one of the possible regioisomers. Two regioisomeric structures ($\underline{3}$ and $\underline{3'}$) were expected, but only $\underline{3}$ was actually formed in both cases. In the case of $\underline{3b}$, for example, the two doublets at δ 7.68 and 7.92 in ${}^{1}\text{H-NMR}$ spectrum can be assigned to the two adjacent pyridine ring protons at C-5 and C-4. The large coupling constant between these protons (8 Hz) precluded the possibility of isomer $\underline{3'b}$ in which only a small meta coupling constant should be observed. This assignment was further supported by the general observation that the coupling constant between 4-H and 5(or 3)-H is the largest (about 8 Hz) in ordinary pyridine derivatives.

The formation of these pyridine derivatives $(\underline{3a-c})$ can be rationalized by the mechanistic sequence shown in Scheme 1. The thermally allowed [4+2] cycloaddition reaction of $\underline{1}$ with an olefin would give an intermediate imine $(\underline{6})$, which is deaminated to a dihydropyridine $(\underline{5})$. Indeed, 3-cyano-1,4-dihydro-2-isopropyl-6-phenylpyridine $(\underline{5b})$ was isolated from the reaction of $\underline{1}$ with acrylonitrile. This was smoothly oxidized into 3b upon exposure to air.

Scheme 1. A plausible mechanism for the formation of pyridines (3)

References and Notes

- 1a) K. Burger, G. Dirnsteiner, and J. Fern, Liebigs Ann. Chem., <u>747</u>, 45(1971), and references therein.
- b) T. Kauffmann, U. Koch, F. Streitseifer, and A. Vahrenhorst, Tetrahedron Lett., 1977, 3341.
- c) W. Theilacker and K. W. Thiem, Chem. Ber., 103, 670(1970).
- d) D. H. Aue and D. Thomas, J. Org. Chem., 40, 1349(1975).
- e) J. L. Ripoll, H. Lebrun, and A. Thuillier, Tetrahedron Lett., 1978, 463.
- f) R. H. Hasek, E. U. Elam, and J. C. Martin, J. Org. Chem., 26, 1822(1961).
- 2) Y. Nomura, Y. Takeuchi, S. Tomoda, and M. M. Ito, unpublished results.
- 3) Similar 1,2-hydrogen migration has been observed for the thermolysis of 3-aryl-4-morpholino- Δ^1 -1,2,3-triazolines; R. Fusco, G. Bianchetti, and D. Pocar, Gazz. Chim. Ital., 91, 932(1961).
- 4) Mp 75.5-76.5 °C, M^{+} = 313 (C₁₈H₁₉NO₄), Anal. found(calcd.): C 69.16(69.00), H 6.11(6.11), N 4.52(4.47). IR(KBr): 1730, 1580, 1275, 1252, and 1085 cm⁻¹. ¹H-NMR(CDCl₃): δ_{TMS} 1.40(d, J= 7 Hz, 6H), 3,09(sep, J= 7 Hz, 1H), 3.92(s, 3H), 3.95(s, 3H), 7.3-7.5(m, 3H), 7.9-8.1(m, 3H).
- 5) 3-Cyano-2-isopropyl-6-phenylpyridine (3b). Mp. 75.5-76.5 °C, M⁺= 222 (C₁₅H₁₄N₂), Anal. found (calcd.): C 80.96(81.05), H 6.59(6.35), N 12.69(12.60). IR(KBr): 2205 and 1580 cm⁻¹. ¹H-NMR (CDCl₃): δ_{TMS} 1.47(d, J= 7 Hz, 6H), 3.64(sep, J= 7 Hz, 1H), 7.4-7.6(m, 3H), 7.68(d, J= 8 Hz, 1H), 7.92(d, J= 8 Hz, 1H), 8.0-8.2(m, 2H). Methyl 2-isopropyl-6-phenylpyridine-3-carboxylate (3c). Mp 88.5-89.5 °C, M⁺= 255 (C₁₆H₁₇NO₂), Anal. found(calcd.): C 75.45(75.27), H 6.81(6.71), N 5.71(5.49). IR(KBr): 1725, 1580, 1270, and 1080 cm⁻¹. ¹H-NMR(CDCl₃): δ_{TMS} 1.42(d, J= 7 Hz, 6H), 3.90(s, 3H), 4.02(sep, J= 7 Hz, 1H), 7.3-7.5(m, 3H), 7.52(d, J= 8 Hz, 1H), 8.0-8.2(m, 3H).
- 6) 3-Cyano-1,4-dihydro-2-isopropyl-6-phenylpyridine ($\underline{5b}$). Mp 107-108 °C, M⁺= 224 (C₁₆H₁₇N₂), Anal. found(calcd.): C 80.19(80.32), H 7.16(7.19), N 12.20(12.49). IR(KBr): 3330, 2170, 1665, 1615, 1500, 1290, and 1110 cm⁻¹. 1 H-NMR(CDCl₃): δ_{TMS} 1.21(d, J= 7 Hz, 6H), 3.10(sep, J= 7 Hz, 1H), 3.26(d, J= 3.5 Hz, 2H), 4.9(td, J= 3.5 and 1.7 Hz, 1H), 5.4(br, 1H), 7.32(s, 5H). 7) For example, in the case of pyridine^a) and 3-cyanopyridine, b) the coupling constants between
- 7) For example, in the case of pyridine^{a)} and 3-cyanopyridine,^{b)} the coupling constants between 4-H and 5(or 3)-H are 7.65 and 8.2 Hz respectively. Other ortho coupling constants are both about 4.8 Hz and the meta coupling constants do not exceed 2 Hz.
- a) M. Hansen and H. J. Jacobsen, J. Mag. Resonance, <u>10</u>, 74(1973).
- b) W. Brügel, Z. Elektrochem., <u>66</u>, 159(1962).

(Received December 15, 1978)